Lung and salivary scavenger receptor glycoprotein-340 contribute to the host defense against influenza A viruses.

نویسندگان

  • Kevan L Hartshorn
  • Mitchell R White
  • Tirsit Mogues
  • Toon Ligtenberg
  • Erika Crouch
  • Uffe Holmskov
چکیده

The lung scavenger receptor-rich protein glycoprotein-340 (gp-340) is present in bronchoalveolar lavage (BAL) fluids and saliva and mediates specific adhesion to and aggregation of bacteria. It also binds to surfactant proteins A and D (SP-A and -D). Prior studies demonstrated that SP-A and SP-D contribute to innate defense against influenza A virus (IAV). We now show that lung and salivary gp-340 inhibit the hemagglutination activity and infectivity of IAV and agglutinate the virions through a mechanism distinct from that of SP-D. As in the case of SP-A, the antiviral effects of gp-340 are mediated by noncalcium-dependent interactions between the virus and sialic acid-bearing carbohydrates on gp-340. Gp-340 inhibits IAV strains that are resistant to SP-D. Concentrations of gp-340 present in saliva and BAL fluid of healthy donors are sufficient to bind to IAV and inhibit viral infectivity. On the basis of competition experiments using competing saccharide ligands, it appears that SP-D does not entirely mediate that anti-IAV activity of BAL fluid and contributes little to that of saliva. Furthermore, removal of gp-340 from BAL fluid and saliva significantly reduced anti-IAV activity. Hence, gp-340 contributes to defense against IAV and may be particularly relevant to defense against SP-D-resistant viral strains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Salivary agglutinin and lung scavenger receptor cysteine-rich glycoprotein 340 have broad anti-influenza activities and interactions with surfactant protein D that vary according to donor source and sialylation.

We previously found that scavenger receptor cysteine-rich gp-340 (glycoprotein-340), isolated from lung or saliva, directly inhibits human IAVs (influenza A viruses). We now show that salivary gp-340 has broad antiviral activity against human, equine and porcine IAV strains. Although lung and salivary gp-340 are identical in protein sequence, salivary gp-340 from one donor had significantly gre...

متن کامل

Multiple components contribute to ability of saliva to inhibit influenza viruses.

INTRODUCTION Saliva is a potentially important barrier against respiratory viral infection but its mechanism of action is not well studied. METHODS We tested the antiviral activities of whole saliva, specific salivary gland secretions, and purified salivary proteins against strains of influenza A virus (IAV) in vitro. RESULTS Whole saliva or parotid or submandibular/sublingual secretions fr...

متن کامل

A Sensitive Neutralization Assay for Influenza C Viruses Based on the Acetylesterase Activity HEF Glycoprotein

Influenza C virus possesses specific neuraminate-O-acetylesterase as a receptor-destroying function. This enzymatic activity of the viral glycoprotein HEF (Hemagglutinin, esterase activity and fusion factor) can be visualized in situ by the use of distinct color substrates. Hereby the localization, as well as the quantity of synthesized HEF protein is detectable. We further developed the estera...

متن کامل

Human salivary agglutinin binds to lung surfactant protein-D and is identical with scavenger receptor protein gp-340.

Salivary agglutinin is a 300-400 kDa salivary glycoprotein that binds to antigen B polypeptides of oral streptococci, thereby playing a role in their colonization and the development of caries. A mass spectrum was recorded of a trypsin digest of agglutinin. A dominant peak of 1460 Da was sequenced by quadrupole time-of-flight (Q-TOF) tandem MS. The sequence showed 100% identity with part of the...

متن کامل

Monoclonal antibody-assisted structure-function analysis of the carbohydrate recognition domain of surfactant protein D.

Surfactant protein D (SP-D) plays important roles in host defense against a variety of pathogens including influenza A virus (IAV). Ligand binding by SP-D is mediated by the trimeric neck and carbohydrate recognition domain (NCRD). We used monoclonal antibodies (mAbs) against human SP-D and a panel of mutant collectin NCRD constructs to identify functionally and structurally important epitopes....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Lung cellular and molecular physiology

دوره 285 5  شماره 

صفحات  -

تاریخ انتشار 2003